对于整数a,b,如果a·b≡1(modφ(n)),已知a=167,n=2867,求b。
正确答案:利用求乘逆的算法能算出b=1223。
乘逆算法
对于整数a,b,如果a·b≡1(modφ(r)),则称a,b对于模φ(r)互为乘逆。
求乘逆算法采用欧几里得算法,即重复的使用带余法,即用每次的余数为除数去除上一次的除数,直到余数为1。

乘逆算法
对于整数a,b,如果a·b≡1(modφ(r)),则称a,b对于模φ(r)互为乘逆。
求乘逆算法采用欧几里得算法,即重复的使用带余法,即用每次的余数为除数去除上一次的除数,直到余数为1。

答案解析:有

微信扫一扫手机做题